[1]张连文.加标理论、表征推导、分解方法及接口统一性[J].浙江外国语学院学报,2021,(02):46-61.
 ZHANG Lianwen.Labeling Theory, Representational Derivations andDecompositional Approach to Interface Uniformity[J].,2021,(02):46-61.
点击复制

加标理论、表征推导、分解方法及接口统一性(/HTML)
分享到: 更多

《浙江外国语学院学报》[ISSN:/CN:]

卷:
期数:
2021年02期
页码:
46-61
栏目:
语言学及应用语言学
出版日期:
2021-08-10

文章信息/Info

Title:
Labeling Theory, Representational Derivations andDecompositional Approach to Interface Uniformity
作者:
张连文
(济南大学 外国语学院,山东 济南 250022)
Author(s):
ZHANG Lianwen
(School of Foreign Languages, University of Jinan, Jinan 250022, China)
关键词:
认知结构语言机能分解方法加标理论接口统一性表征理论
Keywords:
cognitive structure faculty of language decompositional approach labeling theory interface uniformity representational theory
文献标志码:
A
摘要:
认知结构和语言机能如何适应认知能力的表征系统对解释理论提出了接口统一性问题。加标理论解决了算法程序,融合了投射层级、形式特征和范畴特征的接口解释功能。算法理论整合了语义计算和表征理论,加标算法是解决计算复杂度的主导因素。加标算法在概念-意向接口核查句法生成的范畴化。在结构依存下,合并加标理论是确定句法关系推导、局部性理论和语义接口解释的决定因素,统一了一致性(AgreeF-F’)运算、特征核查和移交运算。基于最小域Minδ(CH)的严格局部性理论过滤潜在依存。本文的分析表明,在语义接口表征理论这一本质问题上,推导递归循环范畴的解释规则和推理规则分别应用于语类加标和谓词算法的本体范畴加标,具有接口解释的统一性和充分性。基于表征分解方法和语类等同理论,本文明晰了逻辑句法与语义表征和题元标记的互动,以此进一步解决了广义量词和非线性量化问题。结构依存的最小局部条件可阐明表征重组和递增推导制约,而表征的聚集性递增推导源自投射规则。特征运算贯穿狭义句法推导,而范畴加标确定句法语义表征层级的连接。逻辑式对应连贯语段,表现为合并和加标的动态运算过程。加标理论与接口解释理论的统一性互动支持解释规则及模块接口,有效推进了句法启动、接口解释、表征推导和(微观)语义计算研究。
Abstract:
How cognitive structures and the faculty of language adapt to the representational system of cognitive competence proposes the issue of interface uniformity for interpretive theory. Labeling theory resolves the algorithmic procedure, and incorporates projection hierarchies, the interface interpretive functions of formal and categorial features. Algorithmic theory combining semantic computations and representational theory, labeling algorithm is the pivotal factor which solves computational complexity. Labeling algorithm checks the syntactic categorization at C-I interface. Affiliated to structural dependency, merge-labeling theory determines the derivations of syntactic relations, locality and semantic interface interpretations, and it further unifies AgreeF-F’, feature checking and transfer. The strict locality theory based on minimal domain Minδ (CH) filters potential dependencies. Based on the essential problem of semantic interface representational theory, this paper clarifies the fact that the interpretive rules and inferential rules apply respectively to categorial labeling in terms of deriving recursive cyclic categories and ontological category labeling in terms of predicate algorithm (calculus), and the rules are characterized by interface uniformity and interpretative adequacy. With particular reference to decompositional approach and category identity theory, this paper analyzes the complex interactions of logical syntax with semantic representation and theta system. It aims to further solve the issue of generalized quantifiers and nonlinear quantifications. Minimal structural-dependency locality illustrates representational reconstruction and incremental derivational constraints, while cumulative representational derivations arise from projections rules. Feature operations drive narrow syntax derivations, while category labeling determines the syntax-semantics connections. Logical form corresponds to coherent phases, emerging as the dynamic process of merge and labeling. Labeling theory and the uniformity of interface interpretation theory interactively support interpretive rules and modular interface, effectively promoting the study of syntactic priming, interface interpretations, representational derivations and micro semantic computations.
更新日期/Last Update: 2021-08-27